Studies of DNA repair strategies in response to complex DNA damages
نویسنده
چکیده
The main aim of this thesis was to study the role of the indirect actions of γ-rays and αparticles on the complexity of primary DNA damages and the repair fidelity of major DNA repair pathways: non-homologous end joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER). The complexity of radiation-induced damages increases and the proximity between damages decreases with increasing LET due to formation of ionization clusters along the particle track. The complexity of damages formed can be modified by the free radical scavenger dimethyl sulfoxide (DMSO). In addition, the effects of low doses of low dose rate γ-radiation on cellular response in terms of differentiation were investigated. Paper I investigates the role of the indirect effect of radiation on repair fidelity of HRR, NHEJ and BER when damages of different complexity were induced by radiation or by potassium bromate. We found that potassium bromate induces complex DNA damages through processing of base modifications and that the indirect effect of radiation has a high impact on the NHEJ pathway. Results in paper II confirmed our conclusions in paper I that the indirect effect from both γ-rays and α-particles has an impact on all three repair pathways studied and NHEJ benefits the most when the indirect effect of radiation is removed. In paper III we investigated the effects of low dose/dose rate γ-radiation on the developmental process of neural cells by using cell models for neurons and astrocytes. Our results suggest that low dose/dose rate γ-radiation attenuates differentiation and downregulates proteins involved in the differentiation process of neural cells by an epigenetic rather than cytotoxic mechanism.
منابع مشابه
Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay
Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...
متن کاملDifferent aspects of cytochalasin B Blocked micronucleus cytome (CBMN cyt) assay as a comprehensive measurement tool for radiobiological studies, biological dosimetry and genome instability
It is now universally accepted that DNA is the main target for damages caused by physical and chemical genotoxicants. Although there are different methods to measure directly the induced DNA damages but due to fast repair processes in cellular environment, most of the damages would be repaired even before sampling, therefore processed DNA damages, i.e. damages left unrepaired after acting repai...
متن کاملRadioadaptive response in peripheral blood leukocytes of occupationally exposed medical staff with investigation of DNA damage by the use of neutral comet assay
Background: ˝Radioadaptive Response˝ is well-documented phenomenon appeared in low dose ionizing radiation received in vitro and in vivo. Occupational exposure has always been a great concern for radiation workers therefore this study was performed to study radioadaptive response in terms of residual DNA double strand breaks as an endpoint in peripheral blood leukocytes of occupationally expose...
متن کاملNovel Pt(II) Complex and Its Pd(II) Aanalogue. Synthesis, Characterization, Cytotoxicity and DNA-interaction
The ability of small molecules to perturb the natural structure and dynamics of nucleic acids is intriguing and has potential applications in cancer therapeutics. This work reports the synthesis, characterization, cytotoxicity and DNA-binding studies of two cytotoxic and intercalative [M(bpy)(pyrr-dtc)]NO3 complexes (where M = Pt(II) and Pd(II), bpy = 2,2´-bipyridine and pyrr-dtc = p...
متن کاملNickel Increases Chromosomal Abnormalities by Interfering with the Initiation of DNA Repair Pathways
Background: Nickel is a carcinogenic, heavy metal released through industrial activities and via natural resources. It is able to cause DNA damages by reducing the efficiency of DNA repair mechanisms. However, the exact time point at which it is able to interfere with these mechanisms is not yet clearly understood. Methods: To find the most nickel-vulnerable time of repair mechanisms, human de...
متن کامل